\( \newcommand{\A} {\mathbb{A}} \newcommand{\rma} {\mathrm{a}} \newcommand{\rmA} {\mathrm{A}} \newcommand{\ba} {\mathbf{a}} \newcommand{\bA} {\mathbf{A}} \newcommand{\cA} {\mathcal{A}} \newcommand{\bcA} {\boldsymbol{\cA}} \newcommand{\tnsrA} {\underline{\bA}} \newcommand{\wta} {\widetilde{a}} \newcommand{\wtA} {\widetilde{A}} \newcommand{\wtrma} {\widetilde{\rma}} \newcommand{\wtrmA} {\widetilde{\rmA}} \newcommand{\wtba} {\widetilde{\ba}} \newcommand{\wtbA} {\widetilde{\bA}} \newcommand{\wha} {\widehat{a}} \newcommand{\whA} {\widehat{A}} \newcommand{\whrma} {\widehat{\rma}} \newcommand{\whrmA} {\widehat{\rmA}} \newcommand{\whba} {\widehat{\ba}} \newcommand{\whbA} {\widehat{\bA}} \newcommand{\whcA} {\widehat{\cA}} \newcommand{\whtnsrA} {\widehat{\tnsrA}} \newcommand{\B} {\mathbb{B}} \newcommand{\rmb} {\mathrm{b}} \newcommand{\rmB} {\mathrm{B}} \newcommand{\bb} {\mathbf{b}} \newcommand{\bB} {\mathbf{B}} \newcommand{\cB} {\mathcal{B}} \newcommand{\bcB} {\boldsymbol{\cB}} \newcommand{\tnsrB} {\underline{\bB}} \newcommand{\wtb} {\widetilde{b}} \newcommand{\wtB} {\widetilde{B}} \newcommand{\wtrmb} {\widetilde{\rmb}} \newcommand{\wtrmB} {\widetilde{\rmB}} \newcommand{\wtbb} {\widetilde{\bb}} \newcommand{\wtbB} {\widetilde{\bB}} \newcommand{\whb} {\widehat{b}} \newcommand{\whB} {\widehat{B}} \newcommand{\whrmb} {\widehat{\rmb}} \newcommand{\whrmB} {\widehat{\rmB}} \newcommand{\whbb} {\widehat{\bb}} \newcommand{\whbB} {\widehat{\bB}} \newcommand{\whcB} {\widehat{\cB}} \newcommand{\whtnsrB} {\widehat{\tnsrB}} \newcommand{\C} {\mathbb{C}} \newcommand{\rmc} {\mathrm{c}} \newcommand{\rmC} {\mathrm{C}} \newcommand{\bc} {\mathbf{c}} \newcommand{\bC} {\mathbf{C}} \newcommand{\cC} {\mathcal{C}} \newcommand{\bcC} {\boldsymbol{\cC}} \newcommand{\tnsrC} {\underline{\bC}} \newcommand{\wtc} {\widetilde{c}} \newcommand{\wtC} {\widetilde{C}} \newcommand{\wtrmc} {\widetilde{\rmc}} \newcommand{\wtrmC} {\widetilde{\rmC}} \newcommand{\wtbc} {\widetilde{\bc}} \newcommand{\wtbC} {\widetilde{\bC}} \newcommand{\whc} {\widehat{c}} \newcommand{\whC} {\widehat{C}} \newcommand{\whrmc} {\widehat{\rmc}} \newcommand{\whrmC} {\widehat{\rmC}} \newcommand{\whbc} {\widehat{\bc}} \newcommand{\whbC} {\widehat{\bC}} \newcommand{\whcC} {\widehat{\cC}} \newcommand{\whtnsrC} {\widehat{\tnsrC}} \newcommand{\D} {\mathbb{D}} \newcommand{\rmd} {\mathrm{d}} \newcommand{\rmD} {\mathrm{D}} \newcommand{\bd} {\mathbf{d}} \newcommand{\bD} {\mathbf{D}} \newcommand{\cD} {\mathcal{D}} \newcommand{\bcD} {\boldsymbol{\cD}} \newcommand{\tnsrD} {\underline{\bD}} \newcommand{\wtd} {\widetilde{d}} \newcommand{\wtD} {\widetilde{D}} \newcommand{\wtrmd} {\widetilde{\rmd}} \newcommand{\wtrmD} {\widetilde{\rmD}} \newcommand{\wtbd} {\widetilde{\bd}} \newcommand{\wtbD} {\widetilde{\bD}} \newcommand{\whd} {\widehat{d}} \newcommand{\whD} {\widehat{D}} \newcommand{\whrmd} {\widehat{\rmd}} \newcommand{\whrmD} {\widehat{\rmD}} \newcommand{\whbd} {\widehat{\bd}} \newcommand{\whbD} {\widehat{\bD}} \newcommand{\whcD} {\widehat{\cD}} \newcommand{\whtnsrD} {\widehat{\tnsrD}} \newcommand{\E} {\mathbb{E}} \newcommand{\rme} {\mathrm{e}} \newcommand{\rmE} {\mathrm{E}} \newcommand{\be} {\mathbf{e}} \newcommand{\bE} {\mathbf{E}} \newcommand{\cE} {\mathcal{E}} \newcommand{\bcE} {\boldsymbol{\cE}} \newcommand{\tnsrE} {\underline{\bE}} \newcommand{\wte} {\widetilde{e}} \newcommand{\wtE} {\widetilde{E}} \newcommand{\wtrme} {\widetilde{\rme}} \newcommand{\wtrmE} {\widetilde{\rmE}} \newcommand{\wtbe} {\widetilde{\be}} \newcommand{\wtbE} {\widetilde{\bE}} \newcommand{\whe} {\widehat{e}} \newcommand{\whE} {\widehat{E}} \newcommand{\whrme} {\widehat{\rme}} \newcommand{\whrmE} {\widehat{\rmE}} \newcommand{\whbe} {\widehat{\be}} \newcommand{\whbE} {\widehat{\bE}} \newcommand{\whcE} {\widehat{\cE}} \newcommand{\whtnsrE} {\widehat{\tnsrE}} \newcommand{\F} {\mathbb{F}} \newcommand{\rmf} {\mathrm{f}} \newcommand{\rmF} {\mathrm{F}} \newcommand{\bff} {\mathbf{f}} \newcommand{\bF} {\mathbf{F}} \newcommand{\cF} {\mathcal{F}} \newcommand{\bcF} {\boldsymbol{\cF}} \newcommand{\tnsrF} {\underline{\bF}} \newcommand{\wtf} {\widetilde{f}} \newcommand{\wtF} {\widetilde{F}} \newcommand{\wtrmf} {\widetilde{\rmf}} \newcommand{\wtrmF} {\widetilde{\rmF}} \newcommand{\wtbf} {\widetilde{\bf}} \newcommand{\wtbF} {\widetilde{\bF}} \newcommand{\whf} {\widehat{f}} \newcommand{\whF} {\widehat{F}} \newcommand{\whrmf} {\widehat{\rmf}} \newcommand{\whrmF} {\widehat{\rmF}} \newcommand{\whbf} {\widehat{\bf}} \newcommand{\whbF} {\widehat{\bF}} \newcommand{\whcF} {\widehat{\cF}} \newcommand{\whtnsrF} {\widehat{\tnsrF}} \newcommand{\G} {\mathbb{G}} \newcommand{\rmg} {\mathrm{g}} \newcommand{\rmG} {\mathrm{G}} \newcommand{\bg} {\mathbf{g}} \newcommand{\bG} {\mathbf{G}} \newcommand{\cG} {\mathcal{G}} \newcommand{\bcG} {\boldsymbol{\cG}} \newcommand{\tnsrG} {\underline{\bG}} \newcommand{\wtg} {\widetilde{g}} \newcommand{\wtG} {\widetilde{G}} \newcommand{\wtrmg} {\widetilde{\rmg}} \newcommand{\wtrmG} {\widetilde{\rmG}} \newcommand{\wtbg} {\widetilde{\bg}} \newcommand{\wtbG} {\widetilde{\bG}} \newcommand{\whg} {\widehat{g}} \newcommand{\whG} {\widehat{G}} \newcommand{\whrmg} {\widehat{\rmg}} \newcommand{\whrmG} {\widehat{\rmG}} \newcommand{\whbg} {\widehat{\bg}} \newcommand{\whbG} {\widehat{\bG}} \newcommand{\whcG} {\widehat{\cG}} \newcommand{\whtnsrG} {\widehat{\tnsrG}} \newcommand{\bbH} {\mathbb{H}} \newcommand{\rmh} {\mathrm{h}} \newcommand{\rmH} {\mathrm{H}} \newcommand{\bh} {\mathbf{h}} \newcommand{\bH} {\mathbf{H}} \newcommand{\cH} {\mathcal{H}} \newcommand{\bcH} {\boldsymbol{\cH}} \newcommand{\tnsrH} {\underline{\bH}} \newcommand{\wth} {\widetilde{h}} \newcommand{\wtH} {\widetilde{H}} \newcommand{\wtrmh} {\widetilde{\rmh}} \newcommand{\wtrmH} {\widetilde{\rmH}} \newcommand{\wtbh} {\widetilde{\bh}} \newcommand{\wtbH} {\widetilde{\bH}} \newcommand{\whh} {\widehat{h}} \newcommand{\whH} {\widehat{H}} \newcommand{\whrmh} {\widehat{\rmh}} \newcommand{\whrmH} {\widehat{\rmH}} \newcommand{\whbh} {\widehat{\bh}} \newcommand{\whbH} {\widehat{\bH}} \newcommand{\whcH} {\widehat{\cH}} \newcommand{\whtnsrH} {\widehat{\tnsrH}} \newcommand{\I} {\mathbb{I}} \newcommand{\rmi} {\mathrm{i}} \newcommand{\rmI} {\mathrm{I}} \newcommand{\bi} {\mathbf{i}} \newcommand{\bI} {\mathbf{I}} \newcommand{\cI} {\mathcal{I}} \newcommand{\bcI} {\boldsymbol{\cI}} \newcommand{\tnsrI} {\underline{\bI}} \newcommand{\wti} {\widetilde{i}} \newcommand{\wtI} {\widetilde{I}} \newcommand{\wtrmi} {\widetilde{\rmi}} \newcommand{\wtrmI} {\widetilde{\rmI}} \newcommand{\wtbi} {\widetilde{\bi}} \newcommand{\wtbI} {\widetilde{\bI}} \newcommand{\whi} {\widehat{i}} \newcommand{\whI} {\widehat{I}} \newcommand{\whrmi} {\widehat{\rmi}} \newcommand{\whrmI} {\widehat{\rmI}} \newcommand{\whbi} {\widehat{\bi}} \newcommand{\whbI} {\widehat{\bI}} \newcommand{\whcI} {\widehat{\cI}} \newcommand{\whtnsrI} {\widehat{\tnsrI}} \newcommand{\J} {\mathbb{J}} \newcommand{\rmj} {\mathrm{j}} \newcommand{\rmJ} {\mathrm{J}} \newcommand{\bj} {\mathbf{j}} \newcommand{\bJ} {\mathbf{J}} \newcommand{\cJ} {\mathcal{J}} \newcommand{\bcJ} {\boldsymbol{\cJ}} \newcommand{\tnsrJ} {\underline{\bJ}} \newcommand{\wtj} {\widetilde{j}} \newcommand{\wtJ} {\widetilde{J}} \newcommand{\wtrmj} {\widetilde{\rmj}} \newcommand{\wtrmJ} {\widetilde{\rmJ}} \newcommand{\wtbj} {\widetilde{\bj}} \newcommand{\wtbJ} {\widetilde{\bJ}} \newcommand{\whj} {\widehat{j}} \newcommand{\whJ} {\widehat{J}} \newcommand{\whrmj} {\widehat{\rmj}} \newcommand{\whrmJ} {\widehat{\rmJ}} \newcommand{\whbj} {\widehat{\bj}} \newcommand{\whbJ} {\widehat{\bJ}} \newcommand{\whcJ} {\widehat{\cJ}} \newcommand{\whtnsrJ} {\widehat{\tnsrJ}} \newcommand{\K} {\mathbb{K}} \newcommand{\rmk} {\mathrm{k}} \newcommand{\rmK} {\mathrm{K}} \newcommand{\bk} {\mathbf{k}} \newcommand{\bK} {\mathbf{K}} \newcommand{\cK} {\mathcal{K}} \newcommand{\bcK} {\boldsymbol{\cK}} \newcommand{\tnsrK} {\underline{\bK}} \newcommand{\wtk} {\widetilde{k}} \newcommand{\wtK} {\widetilde{K}} \newcommand{\wtrmk} {\widetilde{\rmk}} \newcommand{\wtrmK} {\widetilde{\rmK}} \newcommand{\wtbk} {\widetilde{\bk}} \newcommand{\wtbK} {\widetilde{\bK}} \newcommand{\whk} {\widehat{k}} \newcommand{\whK} {\widehat{K}} \newcommand{\whrmk} {\widehat{\rmk}} \newcommand{\whrmK} {\widehat{\rmK}} \newcommand{\whbk} {\widehat{\bk}} \newcommand{\whbK} {\widehat{\bK}} \newcommand{\whcK} {\widehat{\cK}} \newcommand{\whtnsrK} {\widehat{\tnsrK}} \newcommand{\bbL} {\mathbb{L}} \newcommand{\rml} {\mathrm{l}} \newcommand{\rmL} {\mathrm{L}} \newcommand{\bl} {\mathbf{l}} \newcommand{\bL} {\mathbf{L}} \newcommand{\cL} {\mathcal{L}} \newcommand{\bcL} {\boldsymbol{\cL}} \newcommand{\tnsrL} {\underline{\bL}} \newcommand{\wtl} {\widetilde{l}} \newcommand{\wtL} {\widetilde{L}} \newcommand{\wtrml} {\widetilde{\rml}} \newcommand{\wtrmL} {\widetilde{\rmL}} \newcommand{\wtbl} {\widetilde{\bl}} \newcommand{\wtbL} {\widetilde{\bL}} \newcommand{\whl} {\widehat{l}} \newcommand{\whL} {\widehat{L}} \newcommand{\whrml} {\widehat{\rml}} \newcommand{\whrmL} {\widehat{\rmL}} \newcommand{\whbl} {\widehat{\bl}} \newcommand{\whbL} {\widehat{\bL}} \newcommand{\whcL} {\widehat{\cL}} \newcommand{\whtnsrL} {\widehat{\tnsrL}} \newcommand{\M} {\mathbb{M}} \newcommand{\rmm} {\mathrm{m}} \newcommand{\rmM} {\mathrm{M}} \newcommand{\bm} {\mathbf{m}} \newcommand{\bM} {\mathbf{M}} \newcommand{\cM} {\mathcal{M}} \newcommand{\bcM} {\boldsymbol{\cM}} \newcommand{\tnsrM} {\underline{\bM}} \newcommand{\wtm} {\widetilde{m}} \newcommand{\wtM} {\widetilde{M}} \newcommand{\wtrmm} {\widetilde{\rmm}} \newcommand{\wtrmM} {\widetilde{\rmM}} \newcommand{\wtbm} {\widetilde{\bm}} \newcommand{\wtbM} {\widetilde{\bM}} \newcommand{\whm} {\widehat{m}} \newcommand{\whM} {\widehat{M}} \newcommand{\whrmm} {\widehat{\rmm}} \newcommand{\whrmM} {\widehat{\rmM}} \newcommand{\whbm} {\widehat{\bm}} \newcommand{\whbM} {\widehat{\bM}} \newcommand{\whcM} {\widehat{\cM}} \newcommand{\whtnsrM} {\widehat{\tnsrM}} \newcommand{\N} {\mathbb{N}} \newcommand{\rmn} {\mathrm{n}} \newcommand{\rmN} {\mathrm{N}} \newcommand{\bn} {\mathbf{n}} \newcommand{\bN} {\mathbf{N}} \newcommand{\cN} {\mathcal{N}} \newcommand{\bcN} {\boldsymbol{\cN}} \newcommand{\tnsrN} {\underline{\bN}} \newcommand{\wtn} {\widetilde{n}} \newcommand{\wtN} {\widetilde{N}} \newcommand{\wtrmn} {\widetilde{\rmn}} \newcommand{\wtrmN} {\widetilde{\rmN}} \newcommand{\wtbn} {\widetilde{\bn}} \newcommand{\wtbN} {\widetilde{\bN}} \newcommand{\whn} {\widehat{n}} \newcommand{\whN} {\widehat{N}} \newcommand{\whrmn} {\widehat{\rmn}} \newcommand{\whrmN} {\widehat{\rmN}} \newcommand{\whbn} {\widehat{\bn}} \newcommand{\whbN} {\widehat{\bN}} \newcommand{\whcN} {\widehat{\cN}} \newcommand{\whtnsrN} {\widehat{\tnsrN}} \newcommand{\bbO} {\mathbb{O}} \newcommand{\rmo} {\mathrm{o}} \newcommand{\rmO} {\mathrm{O}} \newcommand{\bo} {\mathbf{o}} \newcommand{\bO} {\mathbf{O}} \newcommand{\cO} {\mathcal{O}} \newcommand{\bcO} {\boldsymbol{\cO}} \newcommand{\tnsrO} {\underline{\bO}} \newcommand{\wto} {\widetilde{o}} \newcommand{\wtO} {\widetilde{O}} \newcommand{\wtrmo} {\widetilde{\rmo}} \newcommand{\wtrmO} {\widetilde{\rmO}} \newcommand{\wtbo} {\widetilde{\bo}} \newcommand{\wtbO} {\widetilde{\bO}} \newcommand{\who} {\widehat{o}} \newcommand{\whO} {\widehat{O}} \newcommand{\whrmo} {\widehat{\rmo}} \newcommand{\whrmO} {\widehat{\rmO}} \newcommand{\whbo} {\widehat{\bo}} \newcommand{\whbO} {\widehat{\bO}} \newcommand{\whcO} {\widehat{\cO}} \newcommand{\whtnsrO} {\widehat{\tnsrO}} \newcommand{\bbP} {\mathbb{P}} \newcommand{\rmp} {\mathrm{p}} \newcommand{\rmP} {\mathrm{P}} \newcommand{\bp} {\mathbf{p}} \newcommand{\bP} {\mathbf{P}} \newcommand{\cP} {\mathcal{P}} \newcommand{\bcP} {\boldsymbol{\cP}} \newcommand{\tnsrP} {\underline{\bP}} \newcommand{\wtp} {\widetilde{p}} \newcommand{\wtP} {\widetilde{P}} \newcommand{\wtrmp} {\widetilde{\rmp}} \newcommand{\wtrmP} {\widetilde{\rmP}} \newcommand{\wtbp} {\widetilde{\bp}} \newcommand{\wtbP} {\widetilde{\bP}} \newcommand{\whp} {\widehat{p}} \newcommand{\whP} {\widehat{P}} \newcommand{\whrmp} {\widehat{\rmp}} \newcommand{\whrmP} {\widehat{\rmP}} \newcommand{\whbp} {\widehat{\bp}} \newcommand{\whbP} {\widehat{\bP}} \newcommand{\whcP} {\widehat{\cP}} \newcommand{\whtnsrP} {\widehat{\tnsrP}} \newcommand{\Q} {\mathbb{Q}} \newcommand{\rmq} {\mathrm{q}} \newcommand{\rmQ} {\mathrm{Q}} \newcommand{\bq} {\mathbf{q}} \newcommand{\bQ} {\mathbf{Q}} \newcommand{\cQ} {\mathcal{Q}} \newcommand{\bcQ} {\boldsymbol{\cQ}} \newcommand{\tnsrQ} {\underline{\bQ}} \newcommand{\wtq} {\widetilde{q}} \newcommand{\wtQ} {\widetilde{Q}} \newcommand{\wtrmq} {\widetilde{\rmq}} \newcommand{\wtrmQ} {\widetilde{\rmQ}} \newcommand{\wtbq} {\widetilde{\bq}} \newcommand{\wtbQ} {\widetilde{\bQ}} \newcommand{\whq} {\widehat{q}} \newcommand{\whQ} {\widehat{Q}} \newcommand{\whrmq} {\widehat{\rmq}} \newcommand{\whrmQ} {\widehat{\rmQ}} \newcommand{\whbq} {\widehat{\bq}} \newcommand{\whbQ} {\widehat{\bQ}} \newcommand{\whcQ} {\widehat{\cQ}} \newcommand{\whtnsrQ} {\widehat{\tnsrQ}} \newcommand{\R} {\mathbb{R}} \newcommand{\rmr} {\mathrm{r}} \newcommand{\rmR} {\mathrm{R}} \newcommand{\br} {\mathbf{r}} \newcommand{\bR} {\mathbf{R}} \newcommand{\cR} {\mathcal{R}} \newcommand{\bcR} {\boldsymbol{\cR}} \newcommand{\tnsrR} {\underline{\bR}} \newcommand{\wtr} {\widetilde{r}} \newcommand{\wtR} {\widetilde{R}} \newcommand{\wtrmr} {\widetilde{\rmr}} \newcommand{\wtrmR} {\widetilde{\rmR}} \newcommand{\wtbr} {\widetilde{\br}} \newcommand{\wtbR} {\widetilde{\bR}} \newcommand{\whr} {\widehat{r}} \newcommand{\whR} {\widehat{R}} \newcommand{\whrmr} {\widehat{\rmr}} \newcommand{\whrmR} {\widehat{\rmR}} \newcommand{\whbr} {\widehat{\br}} \newcommand{\whbR} {\widehat{\bR}} \newcommand{\whcR} {\widehat{\cR}} \newcommand{\whtnsrR} {\widehat{\tnsrR}} \newcommand{\bbS} {\mathbb{S}} \newcommand{\rms} {\mathrm{s}} \newcommand{\rmS} {\mathrm{S}} \newcommand{\bs} {\mathbf{s}} \newcommand{\bS} {\mathbf{S}} \newcommand{\cS} {\mathcal{S}} \newcommand{\bcS} {\boldsymbol{\cS}} \newcommand{\tnsrS} {\underline{\bS}} \newcommand{\wts} {\widetilde{s}} \newcommand{\wtS} {\widetilde{S}} \newcommand{\wtrms} {\widetilde{\rms}} \newcommand{\wtrmS} {\widetilde{\rmS}} \newcommand{\wtbs} {\widetilde{\bs}} \newcommand{\wtbS} {\widetilde{\bS}} \newcommand{\whs} {\widehat{s}} \newcommand{\whS} {\widehat{S}} \newcommand{\whrms} {\widehat{\rms}} \newcommand{\whrmS} {\widehat{\rmS}} \newcommand{\whbs} {\widehat{\bs}} \newcommand{\whbS} {\widehat{\bS}} \newcommand{\whcS} {\widehat{\cS}} \newcommand{\whtnsrS} {\widehat{\tnsrS}} \newcommand{\T} {\mathbb{T}} \newcommand{\rmt} {\mathrm{t}} \newcommand{\rmT} {\mathrm{T}} \newcommand{\bt} {\mathbf{t}} \newcommand{\bT} {\mathbf{T}} \newcommand{\cT} {\mathcal{T}} \newcommand{\bcT} {\boldsymbol{\cT}} \newcommand{\tnsrT} {\underline{\bT}} \newcommand{\wtt} {\widetilde{t}} \newcommand{\wtT} {\widetilde{T}} \newcommand{\wtrmt} {\widetilde{\rmt}} \newcommand{\wtrmT} {\widetilde{\rmT}} \newcommand{\wtbt} {\widetilde{\bt}} \newcommand{\wtbT} {\widetilde{\bT}} \newcommand{\wht} {\widehat{t}} \newcommand{\whT} {\widehat{T}} \newcommand{\whrmt} {\widehat{\rmt}} \newcommand{\whrmT} {\widehat{\rmT}} \newcommand{\whbt} {\widehat{\bt}} \newcommand{\whbT} {\widehat{\bT}} \newcommand{\whcT} {\widehat{\cT}} \newcommand{\whtnsrT} {\widehat{\tnsrT}} \newcommand{\U} {\mathbb{U}} \newcommand{\rmu} {\mathrm{u}} \newcommand{\rmU} {\mathrm{U}} \newcommand{\bu} {\mathbf{u}} \newcommand{\bU} {\mathbf{U}} \newcommand{\cU} {\mathcal{U}} \newcommand{\bcU} {\boldsymbol{\cU}} \newcommand{\tnsrU} {\underline{\bU}} \newcommand{\wtu} {\widetilde{u}} \newcommand{\wtU} {\widetilde{U}} \newcommand{\wtrmu} {\widetilde{\rmu}} \newcommand{\wtrmU} {\widetilde{\rmU}} \newcommand{\wtbu} {\widetilde{\bu}} \newcommand{\wtbU} {\widetilde{\bU}} \newcommand{\whu} {\widehat{u}} \newcommand{\whU} {\widehat{U}} \newcommand{\whrmu} {\widehat{\rmu}} \newcommand{\whrmU} {\widehat{\rmU}} \newcommand{\whbu} {\widehat{\bu}} \newcommand{\whbU} {\widehat{\bU}} \newcommand{\whcU} {\widehat{\cU}} \newcommand{\whtnsrU} {\widehat{\tnsrU}} \newcommand{\V} {\mathbb{V}} \newcommand{\rmv} {\mathrm{v}} \newcommand{\rmV} {\mathrm{V}} \newcommand{\bv} {\mathbf{v}} \newcommand{\bV} {\mathbf{V}} \newcommand{\cV} {\mathcal{V}} \newcommand{\bcV} {\boldsymbol{\cV}} \newcommand{\tnsrV} {\underline{\bV}} \newcommand{\wtv} {\widetilde{v}} \newcommand{\wtV} {\widetilde{V}} \newcommand{\wtrmv} {\widetilde{\rmv}} \newcommand{\wtrmV} {\widetilde{\rmV}} \newcommand{\wtbv} {\widetilde{\bv}} \newcommand{\wtbV} {\widetilde{\bV}} \newcommand{\whv} {\widehat{v}} \newcommand{\whV} {\widehat{V}} \newcommand{\whrmv} {\widehat{\rmv}} \newcommand{\whrmV} {\widehat{\rmV}} \newcommand{\whbv} {\widehat{\bv}} \newcommand{\whbV} {\widehat{\bV}} \newcommand{\whcV} {\widehat{\cV}} \newcommand{\whtnsrV} {\widehat{\tnsrV}} \newcommand{\W} {\mathbb{W}} \newcommand{\rmw} {\mathrm{w}} \newcommand{\rmW} {\mathrm{W}} \newcommand{\bw} {\mathbf{w}} \newcommand{\bW} {\mathbf{W}} \newcommand{\cW} {\mathcal{W}} \newcommand{\bcW} {\boldsymbol{\cW}} \newcommand{\tnsrW} {\underline{\bW}} \newcommand{\wtw} {\widetilde{w}} \newcommand{\wtW} {\widetilde{W}} \newcommand{\wtrmw} {\widetilde{\rmw}} \newcommand{\wtrmW} {\widetilde{\rmW}} \newcommand{\wtbw} {\widetilde{\bw}} \newcommand{\wtbW} {\widetilde{\bW}} \newcommand{\whw} {\widehat{w}} \newcommand{\whW} {\widehat{W}} \newcommand{\whrmw} {\widehat{\rmw}} \newcommand{\whrmW} {\widehat{\rmW}} \newcommand{\whbw} {\widehat{\bw}} \newcommand{\whbW} {\widehat{\bW}} \newcommand{\whcW} {\widehat{\cW}} \newcommand{\whtnsrW} {\widehat{\tnsrW}} \newcommand{\X} {\mathbb{X}} \newcommand{\rmx} {\mathrm{x}} \newcommand{\rmX} {\mathrm{X}} \newcommand{\bx} {\mathbf{x}} \newcommand{\bX} {\mathbf{X}} \newcommand{\cX} {\mathcal{X}} \newcommand{\bcX} {\boldsymbol{\cX}} \newcommand{\tnsrX} {\underline{\bX}} \newcommand{\wtx} {\widetilde{x}} \newcommand{\wtX} {\widetilde{X}} \newcommand{\wtrmx} {\widetilde{\rmx}} \newcommand{\wtrmX} {\widetilde{\rmX}} \newcommand{\wtbx} {\widetilde{\bx}} \newcommand{\wtbX} {\widetilde{\bX}} \newcommand{\whx} {\widehat{x}} \newcommand{\whX} {\widehat{X}} \newcommand{\whrmx} {\widehat{\rmx}} \newcommand{\whrmX} {\widehat{\rmX}} \newcommand{\whbx} {\widehat{\bx}} \newcommand{\whbX} {\widehat{\bX}} \newcommand{\whcX} {\widehat{\cX}} \newcommand{\whtnsrX} {\widehat{\tnsrX}} \newcommand{\Y} {\mathbb{Y}} \newcommand{\rmy} {\mathrm{y}} \newcommand{\rmY} {\mathrm{Y}} \newcommand{\by} {\mathbf{y}} \newcommand{\bY} {\mathbf{Y}} \newcommand{\cY} {\mathcal{Y}} \newcommand{\bcY} {\boldsymbol{\cY}} \newcommand{\tnsrY} {\underline{\bY}} \newcommand{\wty} {\widetilde{y}} \newcommand{\wtY} {\widetilde{Y}} \newcommand{\wtrmy} {\widetilde{\rmy}} \newcommand{\wtrmY} {\widetilde{\rmY}} \newcommand{\wtby} {\widetilde{\by}} \newcommand{\wtbY} {\widetilde{\bY}} \newcommand{\why} {\widehat{y}} \newcommand{\whY} {\widehat{Y}} \newcommand{\whrmy} {\widehat{\rmy}} \newcommand{\whrmY} {\widehat{\rmY}} \newcommand{\whby} {\widehat{\by}} \newcommand{\whbY} {\widehat{\bY}} \newcommand{\whcY} {\widehat{\cY}} \newcommand{\whtnsrY} {\widehat{\tnsrY}} \newcommand{\Z} {\mathbb{Z}} \newcommand{\rmz} {\mathrm{z}} \newcommand{\rmZ} {\mathrm{Z}} \newcommand{\bz} {\mathbf{z}} \newcommand{\bZ} {\mathbf{Z}} \newcommand{\cZ} {\mathcal{Z}} \newcommand{\bcZ} {\boldsymbol{\cZ}} \newcommand{\tnsrZ} {\underline{\bZ}} \newcommand{\wtz} {\widetilde{z}} \newcommand{\wtZ} {\widetilde{Z}} \newcommand{\wtrmz} {\widetilde{\rmz}} \newcommand{\wtrmZ} {\widetilde{\rmZ}} \newcommand{\wtbz} {\widetilde{\bz}} \newcommand{\wtbZ} {\widetilde{\bZ}} \newcommand{\whz} {\widehat{z}} \newcommand{\whZ} {\widehat{Z}} \newcommand{\whrmz} {\widehat{\rmz}} \newcommand{\whrmZ} {\widehat{\rmZ}} \newcommand{\whbz} {\widehat{\bz}} \newcommand{\whbZ} {\widehat{\bZ}} \newcommand{\whcZ} {\widehat{\cZ}} \newcommand{\whtnsrZ} {\widehat{\tnsrZ}} \newcommand{\balpha} {\boldsymbol{\alpha}} \newcommand{\wtalpha} {\widetilde{\alpha}} \newcommand{\whalpha} {\widehat{\alpha}} \newcommand{\wtbalpha} {\widetilde{\balpha}} \newcommand{\whbalpha} {\widehat{\balpha}} \newcommand{\bbeta} {\boldsymbol{\beta}} \newcommand{\wtbeta} {\widetilde{\beta}} \newcommand{\whbeta} {\widehat{\beta}} \newcommand{\wtbbeta} {\widetilde{\bbeta}} \newcommand{\whbbeta} {\widehat{\bbeta}} \newcommand{\bgamma} {\boldsymbol{\gamma}} \newcommand{\wtgamma} {\widetilde{\gamma}} \newcommand{\whgamma} {\widehat{\gamma}} \newcommand{\wtbgamma} {\widetilde{\bgamma}} \newcommand{\whbgamma} {\widehat{\bgamma}} \newcommand{\bdelta} {\boldsymbol{\delta}} \newcommand{\wtdelta} {\widetilde{\delta}} \newcommand{\whdelta} {\widehat{\delta}} \newcommand{\wtbdelta} {\widetilde{\bdelta}} \newcommand{\whbdelta} {\widehat{\bdelta}} \newcommand{\bepsilon} {\boldsymbol{\epsilon}} \newcommand{\wtepsilon} {\widetilde{\epsilon}} \newcommand{\whepsilon} {\widehat{\epsilon}} \newcommand{\wtbepsilon}{\widetilde{\bepsilon}} \newcommand{\whbepsilon}{\widehat{\bepsilon}} \newcommand{\veps} {\varepsilon} \newcommand{\bveps} {\boldsymbol{\veps}} \newcommand{\wtveps} {\widetilde{\veps}} \newcommand{\whveps} {\widehat{\veps}} \newcommand{\wtbveps} {\widetilde{\bveps}} \newcommand{\whbveps} {\widehat{\bveps}} \newcommand{\bEta} {\boldsymbol{\eta}} \newcommand{\wteta} {\widetilde{\eta}} \newcommand{\wheta} {\widehat{\eta}} \newcommand{\wtbEta} {\widetilde{\bEta}} \newcommand{\whbEta} {\widehat{\bEta}} \newcommand{\btheta} {\boldsymbol{\theta}} \newcommand{\wttheta} {\widetilde{\theta}} \newcommand{\whtheta} {\widehat{\theta}} \newcommand{\wtbtheta} {\widetilde{\btheta}} \newcommand{\whbtheta} {\widehat{\btheta}} \newcommand{\bvtheta} {\boldsymbol{\vartheta}} \newcommand{\wtvtheta} {\widetilde{\vartheta}} \newcommand{\whvtheta} {\widehat{\vartheta}} \newcommand{\wtbvtheta} {\widetilde{\bvtheta}} \newcommand{\whbvtheta} {\widehat{\bvtheta}} \newcommand{\biota} {\boldsymbol{\iota}} \newcommand{\wtiota} {\widetilde{\iota}} \newcommand{\whiota} {\widehat{\iota}} \newcommand{\wtbiota} {\widetilde{\biota}} \newcommand{\whbiota} {\widehat{\biota}} \newcommand{\bkappa} {\boldsymbol{\kappa}} \newcommand{\wtkappa} {\widetilde{\kappa}} \newcommand{\whkappa} {\widehat{\kappa}} \newcommand{\wtbkappa} {\widetilde{\bkappa}} \newcommand{\whbkappa} {\widehat{\bkappa}} \newcommand{\blambda} {\boldsymbol{\lambda}} \newcommand{\wtlambda} {\widetilde{\lambda}} \newcommand{\whlambda} {\widehat{\lambda}} \newcommand{\wtblambda} {\widetilde{\blambda}} \newcommand{\whblambda} {\widehat{\blambda}} \newcommand{\bmu} {\boldsymbol{\mu}} \newcommand{\wtmu} {\widetilde{\mu}} \newcommand{\whmu} {\widehat{\mu}} \newcommand{\wtbmu} {\widetilde{\bmu}} \newcommand{\whbmu} {\widehat{\bmu}} \newcommand{\bnu} {\boldsymbol{\nu}} \newcommand{\wtnu} {\widetilde{\nu}} \newcommand{\whnu} {\widehat{\nu}} \newcommand{\wtbnu} {\widetilde{\bnu}} \newcommand{\whbnu} {\widehat{\bnu}} \newcommand{\bxi} {\boldsymbol{\xi}} \newcommand{\wtxi} {\widetilde{\xi}} \newcommand{\whxi} {\widehat{\xi}} \newcommand{\wtbxi} {\widetilde{\bxi}} \newcommand{\whbxi} {\widehat{\bxi}} \newcommand{\bpi} {\boldsymbol{\pi}} \newcommand{\wtpi} {\widetilde{\pi}} \newcommand{\whpi} {\widehat{\pi}} \newcommand{\wtbpi} {\widetilde{\bpi}} \newcommand{\whbpi} {\widehat{\bpi}} \newcommand{\bvpi} {\boldsymbol{\varpi}} \newcommand{\wtvpi} {\widetilde{\varpi}} \newcommand{\whvpi} {\widehat{\varpi}} \newcommand{\wtbvpi} {\widetilde{\bvpi}} \newcommand{\whbvpi} {\widehat{\bvpi}} \newcommand{\brho} {\boldsymbol{\rho}} \newcommand{\wtrho} {\widetilde{\rho}} \newcommand{\whrho} {\widehat{\rho}} \newcommand{\wtbrho} {\widetilde{\brho}} \newcommand{\whbrho} {\widehat{\brho}} \newcommand{\bvrho} {\boldsymbol{\varrho}} \newcommand{\wtvrho} {\widetilde{\varrho}} \newcommand{\whvrho} {\widehat{\varrho}} \newcommand{\wtbvrho} {\widetilde{\bvrho}} \newcommand{\whbvrho} {\widehat{\bvrho}} \newcommand{\bsigma} {\boldsymbol{\sigma}} \newcommand{\wtsigma} {\widetilde{\sigma}} \newcommand{\whsigma} {\widehat{\sigma}} \newcommand{\wtbsigma} {\widetilde{\bsigma}} \newcommand{\whbsigma} {\widehat{\bsigma}} \newcommand{\bvsigma} {\boldsymbol{\varsigma}} \newcommand{\wtvsigma} {\widetilde{\varsigma}} \newcommand{\whvsigma} {\widehat{\varsigma}} \newcommand{\wtbvsigma} {\widetilde{\bvsigma}} \newcommand{\whbvsigma} {\widehat{\bvsigma}} \newcommand{\btau} {\boldsymbol{\tau}} \newcommand{\wttau} {\widetilde{\tau}} \newcommand{\whtau} {\widehat{\tau}} \newcommand{\wtbtau} {\widetilde{\btau}} \newcommand{\whbtau} {\widehat{\btau}} \newcommand{\bupsilon} {\boldsymbol{\upsilon}} \newcommand{\wtupsilon} {\widetilde{\upsilon}} \newcommand{\whupsilon} {\widehat{\upsilon}} \newcommand{\wtbupsilon}{\widetilde{\bupsilon}} \newcommand{\whbupsilon}{\widehat{\bupsilon}} \newcommand{\bzeta} {\boldsymbol{\zeta}} \newcommand{\wtzeta} {\widetilde{\zeta}} \newcommand{\whzeta} {\widehat{\zeta}} \newcommand{\wtbzeta}{\widetilde{\bzeta}} \newcommand{\whbzeta}{\widehat{\bzeta}} \newcommand{\bphi} {\boldsymbol{\phi}} \newcommand{\wtphi} {\widetilde{\phi}} \newcommand{\whphi} {\widehat{\phi}} \newcommand{\wtbphi} {\widetilde{\bphi}} \newcommand{\whbphi} {\widehat{\bphi}} \newcommand{\bvphi} {\boldsymbol{\varphi}} \newcommand{\wtvphi} {\widetilde{\varphi}} \newcommand{\whvphi} {\widehat{\varphi}} \newcommand{\wtbvphi} {\widetilde{\bvphi}} \newcommand{\whbvphi} {\widehat{\bvphi}} \newcommand{\bchi} {\boldsymbol{\chi}} \newcommand{\wtchi} {\widetilde{\chi}} \newcommand{\whchi} {\widehat{\chi}} \newcommand{\wtbchi} {\widetilde{\bchi}} \newcommand{\whbchi} {\widehat{\bchi}} \newcommand{\bpsi} {\boldsymbol{\psi}} \newcommand{\wtpsi} {\widetilde{\psi}} \newcommand{\whpsi} {\widehat{\psi}} \newcommand{\wtbpsi} {\widetilde{\bpsi}} \newcommand{\whbpsi} {\widehat{\bpsi}} \newcommand{\bomega} {\boldsymbol{\omega}} \newcommand{\wtomega} {\widetilde{\omega}} \newcommand{\whomega} {\widehat{\omega}} \newcommand{\wtbomega} {\widetilde{\bomega}} \newcommand{\whbomega} {\widehat{\bomega}} \newcommand{\bGamma} {\boldsymbol{\Gamma}} \newcommand{\wtGamma} {\widetilde{\Gamma}} \newcommand{\whGamma} {\widehat{\Gamma}} \newcommand{\wtbGamma} {\widetilde{\bGamma}} \newcommand{\whbGamma} {\widehat{\bGamma}} \newcommand{\bDelta} {\boldsymbol{\Delta}} \newcommand{\wtDelta} {\widetilde{\Delta}} \newcommand{\whDelta} {\widehat{\Delta}} \newcommand{\wtbDelta} {\widetilde{\bDelta}} \newcommand{\whbDelta} {\widehat{\bDelta}} \newcommand{\bLambda} {\boldsymbol{\Lambda}} \newcommand{\wtLambda} {\widetilde{\Lambda}} \newcommand{\whLambda} {\widehat{\Lambda}} \newcommand{\wtbLambda} {\widetilde{\bLambda}} \newcommand{\whbLambda} {\widehat{\bLambda}} \newcommand{\bXi} {\boldsymbol{\Xi}} \newcommand{\wtXi} {\widetilde{\Xi}} \newcommand{\whXi} {\widehat{\Xi}} \newcommand{\wtbXi} {\widetilde{\bXi}} \newcommand{\whbXi} {\widehat{\bXi}} \newcommand{\bPi} {\boldsymbol{\Pi}} \newcommand{\wtPi} {\widetilde{\Pi}} \newcommand{\whPi} {\widehat{\Pi}} \newcommand{\wtbPi} {\widetilde{\bPi}} \newcommand{\whbPi} {\widehat{\bPi}} \newcommand{\bSigma} {\boldsymbol{\Sigma}} \newcommand{\wtSigma} {\widetilde{\Sigma}} \newcommand{\whSigma} {\widehat{\Sigma}} \newcommand{\wtbSigma} {\widetilde{\bSigma}} \newcommand{\whbSigma} {\widehat{\bSigma}} \newcommand{\bUpsilon} {\boldsymbol{\Upsilon}} \newcommand{\wtUpsilon} {\widetilde{\Upsilon}} \newcommand{\whUpsilon} {\widehat{\Upsilon}} \newcommand{\wtbUpsilon}{\widetilde{\bUpsilon}} \newcommand{\whbUpsilon}{\widehat{\bUpsilon}} \newcommand{\bPhi} {\boldsymbol{\Phi}} \newcommand{\wtPhi} {\widetilde{\Phi}} \newcommand{\whPhi} {\widehat{\Phi}} \newcommand{\wtbPhi} {\widetilde{\bPhi}} \newcommand{\whbPhi} {\widehat{\bPhi}} \newcommand{\bPsi} {\boldsymbol{\Psi}} \newcommand{\wtPsi} {\widetilde{\Psi}} \newcommand{\whPsi} {\widehat{\Psi}} \newcommand{\wtbPsi} {\widetilde{\bPsi}} \newcommand{\whbPsi} {\widehat{\bPsi}} \newcommand{\bOmega} {\boldsymbol{\Omega}} \newcommand{\wtOmega} {\widetilde{\Omega}} \newcommand{\whOmega} {\widehat{\Omega}} \newcommand{\wtbOmega} {\widetilde{\bOmega}} \newcommand{\whbOmega} {\widehat{\bOmega}} \newcommand{\bzero} {\mathbf{0}} \newcommand{\bone} {\mathbf{1}} \newcommand{\norm}[1]{\left\lVert #1 \right\rVert} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\ceil}[1]{\left \lceil #1 \right\rceil} \)

In this article, we explore the problem of achieving consensus in an undirected connected graph and explore the conditions of convergence on doubly stochastic weight matrix $\bW$.

Given a set of nodes $\cN = {1,2,\ldots,N}$ in a connected graph $\cG = (\cN,\cE)$, where $\cE = \{(i,j), i \neq j, \text{ i,j are connected}\}$ is a set of edges and each edge is an un-ordered pair. Each node $i$ holds a scalar data point $x_i \in \R$ and $\bx^{(t)} = [ x_1^{(t)},x_2^{(t)},\ldots,x_n^{(t)} ]$ is a vector of node values at time $t$. We are interested in computing the average consensus among nodes i.e. finding $\bx^* = \left(\frac{1}{N} \sum\limits_{i=0}^N x_i \right) \bone$, where $\bone$ is a vector of ones. This is usually achieved by:
$$ \lim_{t \rightarrow \infty} \bx^{(t)} = \bx^* $$


A single iteration is defined by a weight matrix $\bW$ of the graph defined as:
$$ \bx^{(t)} = \bW \bx^{(t-1)} $$

where, the weight matrix $\bW$ has a property ($w_{ij}=0, (i,j) \notin \mathcal{E}$). To ensure that $\bx^{(t)} \rightarrow \bx^*$, we per step convergence as:

  • $\bx^{(1)} = \bW \bx^{(0)} $
  • $\bx^{(0)}$ is the vector of initial values at nodes.
  • $ \bx^{(2)} = \bW \bx^{(1)} $. This can be written as: $ \bx^{(2)} = \bW^2 \bx^{(0)} $

So, after $t$ iterations we can write:

$$ \bx^{(t)} = \bW^t \bx^{(0)} $$

Typically, for average consensus we require:

$$ \lim_{t \rightarrow \infty} \bx^{(t)} = \lim_{t \rightarrow \infty} \bW^t \bx^{(0)} $$ which imply: $$ \lim_{t \rightarrow \infty} \bW^t = \bW^ = \frac{1}{n} \bone \bone^T$$

From this we can conclude the following conditions on $\bW$:

  1. $\bone$ is a right eigenvector of $\bW^*$ i.e. $\bW^*\bone = \frac{1}{n}\bone\bone^T\bone=\frac{1}{n}\bone n = \bone$. And that $\lambda = 1$ is an eigenvalue of $\bW^*$.
  2. $\bone$ is also a left eigenvector of $\bW^*$. i.e. $\bone^T \bone\bone^T \frac{1}{n} = n\bone^T\frac{1}{n} = \bone^T$

Since $\bW^*$ is a rank 1 matrix with eigenvalue $\lambda = 1$ and $\bone$ as a corresponding eigenvector implies all other eigenvalues to be $0$ which means for any $\bW$ to converge to $\bW^*$ its first eigenvalue must be $1$ and all other eigenvalues $\abs{\lambda_i} < 1$ for $i=2,3,\ldots, N$.

We can easily see for any $\bW$ to converge to $\bW^*$, it must have a $\bone$ as its eigenvector i.e. $\lim_{t \rightarrow \infty} \bW = \bS \lim_{t \rightarrow \infty} \bDelta^t \bS^{-1} = \bW^*$ where $\bS$ contains the eigenvectors of $\bW$ which after $t$ multiplications should concide with eigenvectors of $\bW^*$ and the only eigenvector that concide is $\bone$. Hence, we can conclude that $\bone$ is an eigenvector of both $\bW$ and $\bW^*$, and therefore, we have established the third condition of convergence:

3. $\bW$ has $\lambda_1 = 1$ and $\abs{\lambda_i}<1$ for $i=2,3,\ldots,N$

Convergence Rate:

Now we have established the third condition of convergence, we can ask what key parameter play’s role in the convergence of $\bW$ to $\bW^*$. For $\bW$ to converge to $\bW^*$ we know that $\abs{\lambda_i(\bW^*)} = 0$ for $i \gt 2$, and $\abs{\lambda_i(\bW)} < 1$ for $i>2$, and $\lambda_1 > \lambda_2 \geq \lambda_3 \ldots \geq \lambda_n$, so $\lambda_2$ of $\bW$ plays a vital role in convergence. Larger $|\lambda_2(\bW)|$ more it takes for $\bW$ to converge. So, we can express this as:

$$ \norm{\bW-\frac{1}{n}\bone\bone^T}_2 $$

where $\norm{\cdot}_2$ represents the spectral norm or maximum singular value. Since, $\bW$ and $\bW^*$ both have a common eigenvalue of $1$, and all other eigenvalues of $\bW^*$ are $0$, we have $\abs{\lambda_2(\bW)} = \norm{\bW-\frac{1}{n} \bone \bone^T}_2 = \norm{\bS}_2 \norm{\bDelta – \bDelta^*}_2 \norm{\bS^{-1}}_2$ as both $\bW$ and $\bW^*$ shares the same eigenbasis $\bS$. $\bDelta^*$ is a diagonal matrix defined as: $diag([1,0,0,\ldots,0])$. Considering only vital role played by $\norm{\bDelta – \bDelta^*}_2$, we can write $\abs{\lambda_2(\bW)} = \norm{\bDelta – \bDelta^*}_2$. If we want to have $\epsilon$ convergence in $t$ iterations then we have:

$$
\begin{align}
&(\abs{\lambda_2(\bW)})^t \leq \epsilon \\
&\text{ Taking log on both sides } \\
&t \log{(|\lambda_2(\bW)|)} \leq \log\epsilon \\
&t \geq \ceil{ \frac{\log \epsilon} {\log{ \left( \abs{\lambda_2 (\bW)} \right) }}}
\end{align}
$$


We have an lower bound on $t$. Hence, we can say that for epsilon convergence of $\bW$ to $\bW^*$, no. of iterations should be minimum of $ \ceil{\frac{\log \epsilon}{\log{(\abs{\lambda_2(\bW)})}}}$.

Error Analysis (Scalar Case)

We now observe how the error behaves when each node has a scalar value. We define the error at time $t$ as:
$$
\begin{align}
\epsilon^{(t)} =& \norm{\bx^{(t)}-\bx^*}_2 \\
=& \norm{\bW^t\bx^{(0)}-\bW^*\bx^{(0)} – \bx^* + \bx^*}_2 \\
=& \norm{ \bW^t \bx^{(0)} – \bW^* \bx^{(0)} – \bW^t \bx^* + \bW^* \bx^*}_2 \\
=& \norm{ (\bW^t-\bW^*) \bx^{(0)} – (\bW^t – \bW^*) \bx^*}_2 \\
=& \norm{(\bW^t-\bW^*)(\bx^{(0)} – \bx^*)}_2 \\
\leq & \norm{\bW^t-\bW^*}_2 \norm{\bx^{(0)} – \bx^{*}}_2 \\
=& \lambda_2^t \norm{\bx^{(0)} – \bx^{*}}_2
\end{align}
$$

where $\lambda_2$ is the second largest eigenvalue of $\bW$ in absolute sense. The error computed here is the mean error (square-root) overall all node values bounded by $\lambda_2^t$ after $t$ iterations.

Error in terms of $t$: We have error at time $t$ upper bounded by:

$$
\begin{align}
&\epsilon^{(t)} \leq \lambda_2^t \norm{\bx^{(0)} – \bx^{}}_2 \\
&\frac{e^{(t)}}{\norm{\bx^{(0)} – \bx^{}}_2} \leq \lambda_2^t \\
&\text{Taking log on both sides } \\
&t \leq \frac{\log{\left(\frac{e^{(t)}}{\norm{\bx^{(0)} – \bx^{}}_2}\right)}}{\log{\lambda_2}}
\end{align}
$$


So, for $\epsilon$ convergence; we have the following upper bound on no. of iterations:
$$ t \leq \frac{\log{\left(\frac{\norm{\bx^{(0)} – \bx^{*}}_2}{\epsilon}\right)}}{|\log{\lambda_2}|} $$
or $t \leq \cO\left(\log\left(\frac{1}{\epsilon}\right)\right)$

Vector Analysis

The above analysis what we did is for scalar case. Like when each node has a scalar value. Now we turn our attention to vector cases to compensate for the rising trend of high-dimension data. Suppose each node $i$ holds a vector of data points $\bx_i \in \R^d$ and we define the matrix of all data points as $\bX = [\bx_1, \bx_2, \ldots , \bx_N] \in \R^{d\times N}$ across all nodes $N$. At time $t$ we define the data matrix as: $\bX^{(t)} = [\bx^{(t)}_1, \bx^{(t)}_2, \ldots , \bx^{(t)}_N] \in \R^{d\times N}$. We further define the average matrix of all $d$ features across all $N$ nodes by $\bX^* = \bX^{(0)} \bW^*$ where each column of $\bX^*$ contains the average vector $\bx^*$ having averaging consensus of $d$ features across $N$ nodes. The update iteration can be written as:
$$ \bX^{(t)} = \bX^{(t-1)}W $$
or
$$ \bX^{(t)} = \bX^{(0)}W^t$$

Error Convergence Analysis

We now move towards how the error behaves as we have multiple features. Let
$$ \bE^{(t)} = \bX^{(t)} – \bX^* $$
The matrix $\bE$ stores the difference between the node values from their averages. We can further analyze:

$$
\begin{align}
\bE^{(t)} =& \bX^{(t)} – \bX^* \\
=& \bX^{(0)} \bW^t – \bX^{(0)}\bW^* \\
=& \bX^{(0)}\bW^t – \bX^{(0)}\bW^* – \bX^* + \bX^* \\
=& \bX^{(0)}\bW^t – \bX^{(0)}\bW^* – \bX^* \bW^t + \bX^* \bW^* \\
=& (\bX^{(0)}-\bX^*) (\bW^t – \bW^*)
\end{align}
$$

As each column of $\bE^{(t)}$ has an error of entries of node $i$ from average $\bx^*$. The target is to bound the norm of the columns of $\bE^{(t)}$. So we use Forbenius norm:
$$
\begin{align}
\norm{\be_i^{(t)}}_2 \leq & \norm{\bE^{(t)}}_F \\
=& \norm{(\bX^{(0)}-\bX^*) (\bW^t – \bW^*)}_F \\
\leq& \norm{\bX^{(0)} – \bX^*}_F \norm{\bW^t-\bW^*}_2 \\
\leq& \lambda_2^t \norm{\bX^{(0)} – \bX^*}_F
\end{align}
$$

where $\lambda_2$ is defined as the second largest eigenvalue of the matrix $\bW$ in absolute sense. So, for a given error per node $i$, we have the following upper bound on no. of iterations:
$$ t \leq \max_i \frac{\log\left( \frac{\norm{\be_i^{(t)}}_2}{\norm{\bX^{(0)} – \bX^*}_F}\right)}{\log(\lambda_2)} $$

We define $\epsilon^{(t)} = \norm{\bE^{(t)}}_F$, this represent the total error accumulated at all nodes at time $t$. Then we have:

$$
\begin{align}
\epsilon^{(t)} =& \norm{\bE^{(t)}}_F \\
=& \norm{(\bX^{(0)}-\bX^*) (\bW^t – \bW^*)}_F \\
\leq& \norm{\bX^{(0)} – \bX^*}_F \norm{\bW^t-\bW^*}_2 \\
\leq& \lambda_2^t \norm{\bX^{(0)} – \bX^*}_F
\end{align}
$$

where $\lambda_2$ is defined as the second largest eigenvalue of the matrix $\bW$ in absolute sense. So, for a given error, we have the following upper bound on no. of iterations:

$$ t \leq \frac{\log\left( \frac{\norm{\bX^{(0)} – \bX^*}_F}{\epsilon}\right)}{|\log(\lambda_2)|} $$

Note: This bound on no. of iterations dictates on how far $\bX^{(0)}$ from $\bX^{*}$ in terms of Forbenius norm given $\epsilon$. This is different than on how many iterations you are required to reach $\bq^*$, which is defined in the following section. Typically, this says that after $t$ communication rounds your initial node values reach within $\epsilon$ neighborhood of the true average.